
International Journal o f  Theoretical Physics, Vol. 31, No. 2, 1992 

Gauge Mechanical Model in N Dimensions 

A.  B o u z a s  1 

Received April 29, 1991 

The Christ-Lee mechanical model is generalized to N spatial dimensions. Its 
quantization as a gauge system is carried out, emphasizing the relationship 
between gauge-fixing and curvilinear coordinates in configuration space. 

1~ INTRODUCTION 

It is in the context of field theories that the concept of local symmetries 
or gauge invariances first arose. Through the past decades, it has acquired 
the status of a central principle. However, gauge invariance is not restricted 
to this kind of theory and, in particular, it may be found in elementary 
classical and quantum mechanics (Dirac, 1964). Since field theories are both 
conceptually and technically the most subtle branches of contemporary phys- 
ics, simple models are introduced as a guide to our intuition and formal 
manipulations. 

In this paper, we treat a mechanical model invariant under time-depend- 
ent rotations in real N-dimensional space, i.e., an SO(N)-gauge invariant 
system. This model was previously introduced in two dimensions and in 
spite of its simplicity it may be used as a first example to test different 
approaches to quantization (Alessandrini, 1989; Bouzas, 1990; Lee, 1981 ; 
Prokhorov, 1982). We extend it to any number of spatial dimensions as an 
illustration to the treatment of various features of gauge systems. We show 
how it is quantized and how it can be interpreted in terms of classical 
configuration space. In this respect, the relation between local symmetry and 
curvilinear coordinate systems and its consequences for quantization are 
emphasized. 
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In Section 2 we present the model and discuss it classically. The meaning 
of gauge invariance and gauge conditions is analyzed there. In Section 3 the 
quantization is performed in the Schr6dinger picture, one that is not frequent 
in infinite-dimensional problems. The discussion of quantization and its 
connection with gauge invariance extends to Section 4. To make the treat- 
ment self-contained, in the Appendices we work out some mathematical 
details needed in the main text. 

2. THE MODEL AND ITS CLASSICAL TREATMENT 

The system we shall be considering (Lee, 1981; Prokhorov, 1982) con- 
sists of a single point particle with mass m = 1 moving in N-dimensional 
real space under the influence of a central force derived from a potential 
function V. We start from its Lagrangian 

L =1~.  R_ V(Ixl) (1) 

where x = (xl, � 9  XN) ~ ~zr is the position vector of the particle,/r stands for 
dx/dt, and the dot indicates the usual inner product in g~N. This Lagrangian is 
invariant under N-dimensional rotations, i.e., under transformations of the 
form 

x '= Ux (2) 

with U~SO(N),  the group of orthogonal N x N matrices with determinant 
+ 1. The algebra associated to this group is the algebra of antisymmetric 
N x N matrices Y. Any such matrix Y may be uniquely written in terms of a 
basis { T ~ ( a  = 1 . . . . .  (~)) of the algebra as 

y=yaTa; y a ~  (3) 

where the summation convention over repeated indices is understood. The 
basis {T a} may be chosen such that the antisymmetric matrices T a satisfy 
the normalization condition 

tr(T ~ " Tb)= _~,,b (4) 

We then define the Lagrangian of our model to be (Prokhorov, 1982) 

Z=�89 (~x)-  V(IxI) (5) 
with 

The components ya ot Y and those of x are the degrees of freedom of 
this system. ~x  is the "covariant derivative" of x. 
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The matrix U in (2) that leaves the Lagrangian (1) invariant depends 
on (N) angles aa parametrizing the group SO(N). In Appendix C a particular 
parametrization is given. If we let the a's depend on time, U defines a 
transformation to a rotating coordinate system and the Lagrangian (1) is 
no longer invariant under (2). This is what is meant by gauge invariance, 
namely, invariance under a group of transformations whose parameters are 
arbitrary functions of time. 

The Lagrangian (5), on the other hand, is unchanged by (2) provided 
we specify that the new degrees of freedom ya transform according to 

x '= U . x  
(7) 

Y'= U" Y. tU+ (7. tU 

where U= U(t)eSO(N) and tU stands for the transpose of U. This is easily 
verified, since 

(2x) '=  ~ ' -  Y'./~'= u .  (~x)  

and the scalar product is invariant under rotations. 
Thus, we are describing the particle motion independently of the state 

of rotation of the coordinate system. It may be related to a fixed reference 
frame by any matrix U = U(t). To obtain the equations of motion, we first 
define the momentum vector conjugate to x, 

~L 
p = - - =  ~ : -  Y-  x (8) 

Then, we have 

3V 
[~ = Y .  p - - -  (9) 

~x 

0 = p .  ( T , . x )  ; a =  1 . . . .  , ( N )  (10) 

The momentum conjugate to the y~ is zero, since their time derivatives do 
not appear in L. 

We have the freedom to choose a gauge to analyze the dynamics 
described by these equations of motion. This is equivalent to choosing a 
system of coordinates. Especially important to the end of quantization will 
be the frame at rest with respect to the space, which, in this formalism, is 
selected by the gauge condition Y=0. First, we have to show that it is 
possible to impose this condition on the system. 
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Lemma 1. There exists a gauge transformation U(t) such that, for a 
given trajectory (x(t), Y(t)) in configuration space, we have 

x'(t) = U(t)" x(t)  (11) 

Y'(t)=0 (12) 

Proof From equation (7) we see that given the antisymmetric matrix 
Y(t), we only have to find a matrix U(t)~SO(N) satisfying 

t ) = - u .  Y (13) 

for the condition Y'= 0 to be satisfied. In analogy with the case in field 
theory (Lee, 1981), U is simply expressed as 

U = T  e x p [ - f l  dt Y(t)l 

In Appendix A this expression is considered in greater detail. 
In this gauge all the y, are zero. We can also choose a rotating coordi- 

nate system in such a way as to cancel some of the coordinates of the particle. 
In this case, the ya will not be fixed and the number of independent variables 
is maintained. This new gauge should be related to the former by a gauge 
transformation. In the following Lemma we prove the existence of another 
gauge of interest for quantization: 

Lemma 2. Given any trajectory x(t), Y(t) of the system, there always 
exists a gauge transformation such that 

x '=(r ,  0 , . . .  ,01); r > 0  (14) 
N-I  

Y' satisfies (Y')o.r only if i = l o r j = l  (15) 

Proof By the previous Lemma, we can suppose that the trajectory x(t), 
Y(t) satisfies Y= 0. We then define the transformation 

U ( t ) = R ( N - D ( r  . . .  , ~)m)" e ( 0 2  . . . . .  ON) (16) 

where P(02 . . . . .  ON) is a matrix defined in Appendix C, 02(t),..., ON(t) 
are spherical polar angles introduced in Appendix B, and ~bl . . . . .  ~b,~ are 
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parameters  defining an SO(N-  1) matrix through the parametrizat ion intro- 
duced in Appendix C such that 

(i 0... 0) R(N-1)(~bl . . . . .  Ore) = (17) 

As we shall see, these parameters r . . . .  , q~m are determined by 0 2 , . . . ,  ON 
uniquely. 

By definition, P and R(N-1) belong to SO(N); then U~SO(N) and is 
an admissible transformation. Using the transformation law of  x and Appen- 
dix C, we find that x already has the desired form 

x ' =  Ux = (r, 0 . . . .  , O) (18) 

Since Y= O, by Lemma 1 we have 

y,= (j tU=R. tR+R. ft. tp. t R (19) 

So far, only P has been used to reduce x'  to the form (14). Since R(N- 1) does 
not alter this form, we shall choose it to obtain (15). We then consider the 
antisymmetric matrix PiP, 

/6. 'P  = (20) 
-~LI p 

where ~ ~ ~N - 1 and p ~ ~ (U - 1) • (U - 1) are defined by this last equation. The 
matrix p is antisymmetric. According to (17), (19), and (20), we have 

o | 

ol loj j �9 p '  '~r,} H ~" 'tr / (21) 

and we only have to find r such that 

. p .  t~+~.  t~= 0 

o r  

~=-~' . p  

with p an antisymmetric ( N -  1 ) • ( N -  1) matrix. Again, as in Lemma 2, the 
existence of  this ~ is shown in Appendix A. 

By construction, ~ and p, and then ~, are determined by the matrix P 
whose parameters 02 . . . . .  ON are the polar  angles of  x. 
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We notice that these considerations are based only on symmetry argu- 
ment, being purely kinematic in nature. In the next section we shall see that 
the vector ~ must be zero due to the equations of motion. However, ~ = 0 
cannot be deduced from the symmetry and then cannot be imposed as a 
gauge condition. 

3. QUANTIZATION OF THE MODEL (1) 

We shall carry out the quantization in the Schr6dinger picture, in the 
coordinate representation. We shall follow (Lee, 1981) and start from the 
gauge Y=O. 

The equation of motion (8) reads in this gauge 

0V 
0 a~ P=~: (22) 

and is the Euler-Lagrange equation derived from (5) restricted to Y= 0, 

L1 ~_1~2_ V(IxI) (23) 

Equation (9) must be considered as a supplementary equation (Dirac, 
1964; Lee, 1981), i.e., a constraint on the motion of the system 

0 = p .  ( T , . x )  ; a=  1 . . . . .  (N)  (24) 

From this set of equations, (:v~-~) are identically satisfied due to the fact 
that, since the group S O ( N -  1) of rotations around x leave it invariant, its 
generators must give zero when applied to x (Prokhorov, 1982). Thus, we 
are left with (N+ 1) independent quantities out of the 2N components of p, 
x. Indeed, the solutions to equation (24) are of the form (Prokhorov, 1982) 

p = Zx (25) 

The Hamiltonian formulation results from (23), (24), 

n= �89  2 + V(Ixl) (26) 

Ga=p" ( T  a . x ) = 0  (27) 

and is a constrained one. Equation (27) is a momentum-dependent con- 
straint. The Poisson bracket of the constraints G a is given by 

[G ~, Gble=fabCGC (28) 
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where the constants fabc satisfy 

T a . T b -  T b . T a = f ~  bc . T ~ 

To quantize, we impose on the phase-space variables the commutation 
conditions 

[xj, p~] = i .  6jk (29) 

These are the only nonzero commutators. In the coordinate representation, 
we then have 

1 O 
pk . . . .  (30)  

i Oxk 

Since the matrices T a are antisymmetric, the constraints G ~ are directly given 
by its classical expression, without the need for a specific ordering rule. They 
satisfy the same algebra as the T a, 

[G a, G b ] = i .  f abc. G c (31) 

The quantum counterpart of equations (26), (27) is then 

1 02 
H = ~- V([xl) (32) 

2 ~x~ Oxk 

Gel[.t:--(Te)jk_ Xkl/.t -- 0 (33) 

where ~, = ~,(x, t) is the wave function of the system. 
We see, then, that in this gauge the quantum version of the model is 

the same as the one we would have obtained had we started from Lagrangian 
(1), except for the conditions (33). These last equations restrict the state 
vector ~, to a subspace of the Hilbert space of square-integrable functions 
depending on x. They simply state that we must consider only wave functions 
with zero angular momentum, and are the only trace left of  gauge invariance 
once we have fixed the Y= 0 gauge (Lee, 1981). Finally, we should remark 
that equations (33) are consistent in virtue of the commutation relations 
(31) (Dirac, 1964). 

4. QUANTIZATION OF THE MODEL (2) 

In the previous section we have seen the quantization within the Y =  0 

gauge condition. It is almost identical to the quantization of the nongauge 
system described by equation (1), the fundamental operators of the theory 
being obtained by a straightforward application of the usual quantization 
rules. However, we still have the constraints (33), which complicate things 
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a bit. In more realistic systems, such constraints may constitute an almost 
insurmountable obstacle. 

It is at this point where we can exploit the invariance of the system. 
Starting from the results of Section 3, we shall quantize our model in the 
gauge of Lemma 2 (Section 2). It will turn out that this is equivalent to 
quantizing the model of equation (1) in polar coordinates, in the same way 
as in Section 3 we arrived at its quantization in Cartesian coordinates. This 
is to be expected, since, as pointed out in Section 2, choosing the gauge xj = 
0 (j  > 2) means choosing a rotating coordinate system that is synchronized 
with the particle so as to keep it always on the x axis. Obviously, we can 
identify the coordinate x~ with the radial coordinate and the orthogonal axes 
x2 . . . .  , x ,  with the transverse directions on which the polar angles vary. 

The Lagrangian (5) restricted by (14), (15) reads 

L2=�89 Y1iYa)r 2- V ( r )  (34) 

The index i runs from 2 to N, since Y~= 0. The Y~ are the components of 
f l  [equation (20)]. Their time derivatives do not enter the Lagrangian L2, 
so we have 

OL2 = r2 Yil = 0 (35)  
~ Y a  

which was anticipated in the Remark in the end of Section 2. 

Therefore, the equation of motion for r is derived from 

L'2 = �89 2 - V ( r )  (36) 

Our quantum state space is now that of functions gt = ~t(r) depending 
on r>0 .  The quantum Hamiltonian is obtained from (32) by using the 
transformations law (10) with U given by (16). Since the parameters 
02 . . . . .  0N are the spherical angles x, we have 

x = rO(02 . . . .  , ON) (37) 

with 0(02 . . . . .  ON) given in Appendix B. We need not worry about Y, since 
we know that it is dynamically zero. By applying the chain rule to (32) with 
(37), we obtain 

N-, V(r) 
H2= 2[_Or 2 r c~rJ r 

(38) 
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where /~0 is an operator depending only on 02 . . . .  , O N, For functions ~ 
independent of the angular variables,//2 reduces to 

=_!(s +u-1 
1-12 2\~r z r ~r V(r) (39) 

The inner product in the state space is given also by transformation (37). In 
Appendix D it is shown that 

(+, v) = j dr FN- I (~ (40) 

up to a constant that is the surface of an ( N -  1)-dimensional unit sphere. 
The explicit form of L0 is also shown there. 

In this gauge the Hamiltonian has the simpler form (39), and the con- 
straints are easily incorporated into the wave function by eliminating its 
angular dependence.//2 is easily recognized as the radial part of the Lapla- 
cian in spherical coordinates. Similarly, by imposing inadequate gauge condi- 
tion, other curvilinear coordinates may be reached. 

5. FINAL REMARKS 

We have presented here a simple model and its quantization as a worked 
example of a gauge-invariant system. The traditional Lagrangian point of 
view used, where the gauge is fixed before passing to the Hamiltonian, is 
most simple and economical and may be applied to a wide class of problems, 
including the theory of Yang-Mills fields for which it was originally formula- 
ted (Lee, 1981). We hope that its salient features have been clearly illustrated. 

This generalization to an arbitrary number of spatial dimensions may 
also be the starting point of a 1IN perturbative expansion. Such a develop- 
ment around N =  0o poses interesting questions as to its effects on the gauge 
group and algebra acting on the system which are currently being 
investigated. 

The method breaks down when the gauge transformations do not pos- 
sess a group structure, i.e., when there are structure functions rather than 
simply constants. Phase-space methods of broader scope must be used 
there, which may also be exemplified by this kind of mechanical model 
(Alessandrini, 1989). 

A P P E N D I X  A 

In this Appendix we show that the equation 

A = - A .  r(t) (A.1) 

where A and Y are (k • k) matrices and Y(t) is antisymmetric, possesses a 
solution A(t) in SO(K). 
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To this end, we consider the matrix 

A ( t )  =-~ exp - dt  Y ( t )  

where 1- is the chronological ordering operator defined as follows. 
Consider the function 

[ ( t l  . . . .  , t , ) = I  1_ if t l < t 2 < " " "  < tn 

l o  otherwise 

Then we define 

(A.2) 

ql-[Y(tl) " �9 " Y(t.)] = E  I ( t i , , . . . ,  t i . )Y( t i~)"  " �9 Y( t i . )  
r n 

where the sum extends over all possible permutations o'n applying 
(1, 2 , . . . ,  n) on ( i l ,  i 2 , . . . ,  in). 

The matrix A is then given by the series 

fo ~_ d h  " " " dtn T [ Y ( t l )  " " Y(tn)] A ( t ) =  0 

or, using the definition of T and changing the order of integration, 

A( t )=  ~ (-1)"  
.=o n! 

; f0 • F~ dt~l. �9 �9 dti~ t ( t ~ l , . . . ,  t i . ) r ( t i l ) .  �9 �9 r ( t O  
~ n  

From the definition of I(t~ . . . .  , t~) it follows that 

;o;o A(t)=  ( -1)  n dt~ d t n - ~ " "  dt2 df i  Y(tl)" �9 �9 Y(t~)  
n=0 

Hence 

~ ( t )  = (-1)" dr,_ 1 d t . - 2  
n=l 

fO t3 f t2 d t l .  r ( t , ) . . ,  r ( t , - l )  r(r  
�9 �9 �9 d t 2  . I o  
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which may be rewritten in the form 

_ ~ (-1)" 
~(t)= .=1 (n-  1)! 

f0 f? r - 1 

to yield 

181 

I•3 
f012 d t , - 2 " ' "  dt2 dtl Y ( q ) ' ' "  Y ( t , - ] ) "  Y(t) 

f l ( t )  = - A ( t ) "  Y(t)  

It remains to be shown that A ( t ) s S O ( k ) .  It is easily seen that 

tA = T exp dt Y(t) 

where T is the anti-chronological ordering operator defined by reversing the 
inequalities in equation (A.2). It then follows that 

A( t ) tA( t )  = A(0)tA(0) = 1 

APPENDIX B. SPHERICAL COORDINATES IN R u 

The spherical polar angles used in the text are defined by the following 
parametrization of  the ( N -  l)-dimensional sphere S N -  ] ~ ~n: 

e: [0,27v) x[--Tv/2, ~/2]N-2--~8 u-1 

e(Oz, . . . , ON) = (yl  . . . . .  YN) 

with 

y] = c o s  O N �9 c o s  O N -  1 . . . . .  c o s  0 3 �9 c o s  0 2 

Yz = c o s  O N . c o s  O N _  1 . . . . .  c o s  03 s i n  02 

Y3 = cos ON" cOS ON-1 . . . . .  COS 04' sin 03 

yN-2=COS ON' COS ON-1 " sin ON-2 

Yu -  1 = COS ON" sin ON- 1 

YN = sin ON 

The vector x ~ ~N is then expressed as 

x = r .  e(02 . . . . .  ON); r= (x" x)~/:_>O 
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APPENDIX C 

We define the matrix P as 

P(02 . . . .  , ON)=BI~r(ON)'Bx(N-I)(ON-I) . . . . .  B12(02) 

where the matrices B~k are given by (p > k) 

I~os Ok 

if k r 1 6 2  

if i = j = p  or i = j = k  

if i=p  a n d j = k ; i r  
if i = k  a n d j = p ; i r  
otherwise 

k =p . . . . .  N. It is immediately verified that 

P(02 . . . . .  0k) �9 e ( 0 2 , . . . ,  0k)=(1, 0 , . . . ,  0) 

The most general matrix R ( m e S O ( N  ) is of the form 

R(N~= R~N-1) " P ( 0 2 , . . . ,  ON) 

with [R(N_1)~SO(N-  1)] l 0 _: 0) 
R~N-1)~- R(N_ 1) 

This definition is iterative, 

R(N-1)=R~N-2) " P'(02, . . . ,  ON-I) ;  etc. 

A basis for the algebra is obtained by differentiating R(m with respect 
to each parameter and evaluating at the identity (0 = 0, for all 0). This basis 
is 

(AiJ)eq : SiPS/q-- 5iqSjP ( i<j)  

Therefore 

tr(A ~ Alm) =--23it~jm 

By construction we have (~) parameters 0, out of which ( N - 1 )  are 
longitude angles (0 e [0, 2z)) and (N~-1) are latitude angles 

( 0 e [ - z / 2 ,  7r/21) 

Further details can be found in group theory textbooks (Murnaghan, 1938). 
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A P P E N D I X  D 

We consider the transformation 

x ~ x ' = ( x ~ , 0  . . . . .  0); x~=r>O 

This transformation is performed by means of  the matrix P ( 0 2 ' ' "  Ojv) 
defined in Appendix C, 

X'k=(P)k j ' x j=r3k l ;  r = ( x "  x)l/2_> 0 

Since P is orthogonal, 

Then 

xk = (P)jk ' x)-'- (P)I~ �9 r 

~Xk 
- - =  (P)1~ 
Or 

Ox~ ~(P)~ . 

oo j  ' 
j = 2  . . . .  , N  

Calling V the matrix whose elements are these derivatives, it can be proven 
by induction that 

det V=rN-I(COS 03) N - z "  (COS 04) N - 3  . . . . .  COS 0 u 

This gives the integration measure (40) after integration over the angular 
variables. The metric tensor in configuration space ~N in these coordinates 
is 

~Xk ~Xh 
g ~ = - -  " q~ = r; q j=  c~j 

Oqi Oqj ' 

Explicitly, we have 

gll = 1 

g(k~ = r2(cos 2 ON . . . . .  COS 2 0h+ 1), 

gNN = ?'2 

(bracketed indices are not to be summed over) 

gij = 0 for i-r 

for 2 <_j<_ N 

2 ~ k < N  
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Writing 

g/J= (g- 1)0. 

g = det g~ 

We obtain the well-known expression 

V 2 -  1 ~ i  ( ~/~ v/gg'J "'~qj) 

Using the expression for go, we obtain 

1 ~ ~fgg, l ~ _  l 0 rU_ 1 8 _ d Z  N - 1  
~gg Or Or r N- l  c3r ctr Or 2+ r 

~/~ g(kk) _ _  

~/g O0(k) O0(k) 

1 1 
- - r  2 COS 2 On" " " COS 20k+l 

0r 

1 [d/O0(k)](COS O(k)) N-k+' ~/O0(k) 
X (COS O(k)) N -k+ 1 

( 2 < k < N )  

1 (3 ~ 22 0 1 1 02 

~2 ~/gg 002 =r~ cos 2 On" . . . .  COS2 03 002 

1 ~ gNN 63 _ 1 0 0 
x/g t~0N x/g r 2 COS O N - -  OON COS ON OON 00~ 

This gives an expression for the operator L0. Alternatively, it may be 
obtained from (32) by using the chain rule. 
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